Mouse P450RAI (CYP26) expression and retinoic acid-inducible retinoic acid metabolism in F9 cells are regulated by retinoic acid receptor gamma and retinoid X receptor alpha.

نویسندگان

  • S S Abu-Abed
  • B R Beckett
  • H Chiba
  • J V Chithalen
  • G Jones
  • D Metzger
  • P Chambon
  • M Petkovich
چکیده

We have cloned a mouse cDNA homolog of P450RAI, a cytochrome P450 belonging to a new family (CYP26), which has previously been isolated from zebrafish and human cDNAs and found to encode a retinoic acid-inducible retinoic acid hydroxylase activity. The cross-species conservation of the amino acid sequence is high, particularly between the mouse and the human enzymes, in which it is over 90%. Like its human and zibrafish counterparts, the mouse P450RAI cDNA catalyzes metabolism of retinoic acid into 4-OH-retinoic acid, 4-oxo-retinoic acid, 18-OH-retinoic acid, and unidentified water-soluble metabolites when transfected into COS-1 cells. Retinoic acid-inducible retinoic acid metabolism has previously been observed in F9 murine embryonal carcinoma cells and some derivatives lacking retinoid receptors. We were interested in determining whether P450RAI could be responsible for retinoic acid metabolism in F9 cells and in studying the effect of retinoid receptor ablation on P450RAI expression. In wild-type F9 cells and derivatives lacking RAR gamma, RAR alpha, and/or RXR alpha, we observed a direct relationship between the level of retinoic acid metabolic activity and retinoic acid-induced P450RAI mRNA. These experiments, as well as others using synthetic receptor subtype-specific retinoids, suggest that the RAR gamma and RXR alpha receptors mediate the effects of retinoic acid on the expression of the P450RAI gene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytochrome P450RAI(CYP26) promoter: a distinct composite retinoic acid response element underlies the complex regulation of retinoic acid metabolism.

The catabolism of retinoic acid (RA) is an essential mechanism for restricting the exposure of specific tissues and cells to RA. We recently reported the identification of a RA-inducible cytochrome P450 [P450RAI(CYP26)], in zebrafish, mouse, and human, which was shown to be responsible for RA catabolism. P450RAI exhibits a complex spatiotemporal pattern of expression during development and is h...

متن کامل

Regulation of CYP26 (cytochrome P450RAI) mRNA expression and retinoic acid metabolism by retinoids and dietary vitamin A in liver of mice and rats.

Retinoic acid (RA), through nuclear retinoid receptors, regulates the expression of numerous genes. However, little is known of the biochemical mechanisms that regulate RA concentration in vivo. CYP26 (P450RAI), a novel cytochrome P450, is expressed during embryonic development, induced by all-trans RA, and capable of catalyzing the oxidation of [3H]RA to polar retinoids including 4-oxo-RA. Her...

متن کامل

Effects of receptor-selective retinoids on CYP26 gene expression and metabolism of all-trans-retinoic acid in intestinal cells.

Retinoids mediate most of their function via interaction with retinoid receptors [retinoic acid receptors (RARs) and retinoid X receptors (RXRs)], which act as ligand-activated transcription factors controlling the expression of a number of target genes. The complex mechanistic pattern of retinoid-induced effects on gene expression of CYP26 and intestinal metabolism of all-trans-retinoic acid (...

متن کامل

Aryl hydrocarbon receptor knockout mice (AHR-/-) exhibit liver retinoid accumulation and reduced retinoic acid metabolism.

Livers from aryl hydrocarbon receptor-null mice showed a 3-fold increase in retinoids and a 65% decrease in retinoic acid metabolism. Levels of expression of the retinoic acid 4-hydroxylase, P450RAI, did not change, whereas cytochrome P4501A2 levels were lower in the null mouse, as shown earlier; however, this enzyme was found not to be active toward retinoic acid. These data suggest that aryl ...

متن کامل

Retinoic acid receptor isotype specificity in F9 teratocarcinoma stem cells results from the differential recruitment of coregulators to retinoic response elements.

The retinoic acid receptor (RAR) alpha, beta(2), and gamma isotypes each regulate specific subsets of target genes in F9 teratocarcinoma stem cells. We used chromatin immunoprecipitation assays to monitor the association of RARgamma, retinoic X receptor (RXR) alpha, and coregulators with the RARbeta(2), Hoxa1, and Cyp26A1 retinoic acid response elements (RAREs) in F9 wild type and RARalpha, -be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 4  شماره 

صفحات  -

تاریخ انتشار 1998